It is easy to change the layout, sort, reindex, rename, and subset table data using pandas commands. The simple code below shows you how to do this easily. The functions include melt(),pivot,sort_values,rename,sort_index,drop,filter,query,iloc,loc,iat,at and drop_duplicates. Prepare data #dowonload https://github.com/ziwangdeng/Data/blob/main/Vancouver_weather2010to2019_v00.csv import pandas as pd df=pd.read_csv(‘Vancouver_weather2010to2019_v00.csv’) cols=df.columns df1=df[cols[:10]] df2=df[cols[10:]] ll=len(df) df3=df.head(5000) df4=df.tail(ll-5000) df.columns Index([‘Unnamed: 0’, ‘Longitude (x)’, ‘Latitude ..
Tag : worknotes
A comprehensive understanding of the overall situation of the data is the first step in data analysis. The following sample code shows you how to do this simply with pandas. Use of functions columns, keys(),axes,dtypes,info(),describe(),describe(include=object),isna().sum(),nunique(),value_counts(),len,shape,nsmallest(), nlargest(),sample(),head and tail. Read data #dowonload https://github.com/ziwangdeng/Data/blob/main/Vancouver_weather2010to2019_v00.csv import pandas as pd df=pd.read_csv(‘Vancouver_weather2010to2019_v00.csv’) Check column names df.columns Index([‘Unnamed: 0’, ‘Longitude (x)’, ..
Sample code for reducing overfitting problems in deep learning.Answer the following questions: import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # create range of monthly dates download_dates = pd.date_range(start=’2019-01-01′, end=’2020-01-01′, freq=’MS’) # URL from Chrome DevTools Console base_url = (“https://climate.weather.gc.ca/climate_data/bulk_data_e.html?format=csv&” “stationID=51442&Year={}&Month={}&Day=7&timeframe=1&submit=Download+Data”) # add format option to year ..
Example code for a regression model with multiple layers. In addition to the input of the first layer, it keeps adding new inputs to the later layers. Prepare data import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # create range of monthly dates download_dates = pd.date_range(start=’2019-01-01′, end=’2020-01-01′, ..
Simple example code on hyperparameter optimization for DNN regression models. Prepare data import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # create range of monthly dates download_dates = pd.date_range(start=’2019-01-01′, end=’2020-01-01′, freq=’MS’) # URL from Chrome DevTools Console base_url = (“https://climate.weather.gc.ca/climate_data/bulk_data_e.html?format=csv&” “stationID=51442&Year={}&Month={}&Day=7&timeframe=1&submit=Download+Data”) # add format option to year ..
Example code for developing a regression model with keras. It can also answer following questions: Prepare data Read data import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split # create range of monthly dates download_dates = pd.date_range(start=’2019-01-01′, end=’2020-01-01′, freq=’MS’) # URL from Chrome DevTools Console base_url = (“https://climate.weather.gc.ca/climate_data/bulk_data_e.html?format=csv&” ..
Example code for identifying and selecting the high predictive performance features from dataset for machine learning and deep learning models. It can also answer the following questions: Prepare data Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split # create range of monthly dates download_dates = pd.date_range(start=’2019-01-01′, ..
Example code to transform continuous numerical variables into discrete variables with different methods. It cab also answer the following questions. Prepare data and load functions Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from feature_engine.discretisation import EqualFrequencyDiscretiser from feature_engine.discretisation import EqualWidthDiscretiser from feature_engine.discretisation import ArbitraryDiscretiser from ..
Example code for creating and adding new features to a data frame using the feature-engine. It also answer following questions: Math features Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from feature_engine.creation import MathFeatures from feature_engine.creation import RelativeFeatures from feature_engine.creation import CyclicalFeatures # create range of ..
Example code for creating features from time series data, such as lag features and window features? It can answer following questions: import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from feature_engine.timeseries.forecasting import LagFeatures # create range of monthly dates download_dates = pd.date_range(start=’2019-01-01′, end=’2020-01-01′, freq=’MS’) # URL from ..